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Abstract: - This paper derives the optimal production-shipment policy for a vendor-buyer integrated system 
with imperfect quality and an amending product delivery plan using an algebraic method. It is assumed that the 
system may randomly produce certain portion of nonconforming products during each production run. Quality 
assurance in terms of inspection and rework has been given effect to the defective items during and after the 
production run. A (n+1) finished goods distribution policy is used in the proposed vendor-buyer integrated 
system, such a delivery plan aims at reducing inventory holding costs for both producer and buyer. Unlike the 
conventional approach using the differential calculus on the long-run average production-inventory-delivery 
cost function with the need to prove optimality before solving the optimal replenishment-delivery problem, this 
paper adopts a simplified solution procedure using algebraic derivations to deal with the production-shipment 
decision makings. The result demonstrates that the optimal replenishment lot-size and optimal number of 
deliveries can be derived without derivatives. Such an alternative approach enables practitioners who with little 
knowledge of calculus to understand the real world vendor-buyer integrated systems with ease. 
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1  Introduction 
This paper presents an algebraic method for deriving 
the optimal production-shipment policy for a vendor 
buyer integrated system with imperfect quality and 
an amending product delivery plan. The economic 
manufacturing quantity (EMQ) model (also known 
as the finite production rate (FPR) model [1]) is 
commonly used by the manufacturing firms to assist 
them in making routine decisions on “when to start a 
production run?” and “how many to be replenished 
in each production run?” [2-6]. Classic EMQ model 
assumes that all items produced are of perfect quality. 
However, in real world production environment, due 
to various controllable and/or uncontrollable factors, 
production of nonconforming items is inevitable. 
Many studies have been carried out to address the 
imperfection issue in production systems [7-16]. 

Shih [8] examined two inventory models where the 
proportion of defective units in the accepted lot is a 
random variable with known probability distribution. 
Optimal solutions to the modified systems were 
developed and comparisons with the traditional 
models were also presented via numerical examples. 
de Kok [9] studied a lost-sales production/inventory 
control model with two adjustable production rates 
to meet demand. The practical approximations were 
obtained for optimal switch-over levels to such a 
model under the service level constraints. Cheung 
and Hausman [11] proposed an analytical model of 
preventive maintenance (PM) and safety stock (SS) 
strategies in a production environment subject to 
random machine breakdowns. They illustrated the 
trade-off between investing in the two options (PM 
and SS) and provided optimality conditions under 
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which either one or both strategies should be 
implemented to minimize associated cost function. 
Both the deterministic and exponential repair time 
distributions are analyzed in detail in their study. 
Boone et al. [12] studied the impact of imperfect 
processes on the production run time. They built a 
model in an attempt to provide managers with 
guidelines to choose the appropriate production run 
times to cope with both the defective items and 
stoppages occurring due to machine breakdowns. 
The defective items sometimes can be reworked 

and total production-inventory costs will be reduced 
[17-24]. For instance, production processes in plastic 
injection molding, or in printed circuit board (PCB) 
assembly, sometimes uses rework as an acceptable 
process to increase level of quality as well as to cut 
overall production-inventory costs. Yum and 
McDowell [17] treated the allocation of inspection 
effort problem for serial systems as a 0-1 mixed 
integer linear programming problem (MILP). Their 
formulation permitted any combination of scrap, 
rework, or repair at each station and allowed the 
problem to be solved using standard MILP software 
packages. An additional advantage of their approach 
when compared with the traditional dynamic 
programming approach was the ease with which the 
basic model may be modified. Gopalan and Kannan 
[18] considered the manufacturing, inspections and 
rework activities as a two-stage transfer-line 
production system. They analyzed some of the 
transient state characteristics of such a two-stage 
production system subject to an initial buffer of 
infinite capacity, inspection at both the inter- and 
end-stages and rework. A stochastic model was 
developed to investigate the system. Explicit 
analytical expressions for some of the system 
characteristics have been obtained using the state- 
space method and regeneration point technique. 
Chern and Yang [19] considered a threshold control 
policy for an imperfect production system with only 
a work center handling both regular and rework jobs. 
The imperfect production system generates defect 
jobs by factors other than machine failures. A 
threshold control policy sets the guideline for a work 
center to switch between regular and rework jobs. 
They assumed the outcome of each completed 
regular job is an independent Bernoulli trial with 
three possibilities: good, rework, or scrap. Once the 
work center accumulates more than a threshold of 
rework jobs, it finishes the last batch of regular jobs 
and switches to rework jobs. The objective of their 
research was to find a threshold ω and a lot size s 
that maximize the average long-term profit. 
Inderfurth et al. [20] studied a deterministic problem 
of planning the production of new and recovering 

defective items of the same product manufactured on 
the same facility. The processing of a batch includes 
two stages: the regular production and the rework 
process. While waiting for rework, defective items 
deteriorate and there is a given deterioration time 
limit. Deterioration results in an increase in time and 
cost for performing rework processes. The objective 
of their study was to find batch sizes and positions 
of items to be reworked such that overall production- 
inventory costs are minimized. A polynomial 
dynamic programming algorithm was presented to 
solve this problem. Chiu et al. [24] examined a finite 
production rate model with scrap, rework and 
stochastic machine breakdown. Stochastic 
breakdown rate and random defective rate along 
with the reworking of nonconforming items were 
assumed in their study. The objective was to derive 
the optimal production run time that minimize the 
long run average production cost. 

During past decades, many studies have focused 
on optimization of supply chains and vendor-buyer 
integrated production-inventory-delivery systems. 
Multiple or periodic deliveries of finished products 
are commonly and practically assumed rather than 
the continuous issuing policy as was assumed by 
classic EMQ model. Schwarz [25] considered a one- 
warehouse N-retailer inventory system with the 
objective of determining optimal stocking policy 
that minimizes average system cost. He derived 
some necessary properties for the optimal policy as 
well as the optimal solutions. Heuristic solutions 
were also provided for the general problem and 
tested against analytical lower bounds. Studies have 
since been carried out to address various aspects of 
supply chains optimization [26-39]. Selected papers 
are surveyed as follows. Goyal [26] proposed a 
method that is typically applicable to those inventory 
problems where a product is procured by a single 
customer from a single supplier, and an example was 
provided to illustrate his proposed method. Schwarz 
et al. [27] studied fill-rate of a one-warehouse N- 
identical retailer distribution system. Approximation 
model was adopted from a prior study to maximize 
system fill-rate subject to a constraint on system 
safety stock. As results, properties of fill-rate policy 
were suggested to provide management when 
looking into system optimization. Banerjee and 
Banerjee [28] developed an analytical model for a 
coordinated, orderless inventory system for the 
single product, single vendor, multiple purchasers 
case. Such a system was made practical in electronic 
data interchange at the time, for the exchange of 
information between trading partners. On the basis 
of the potential benefits of this technology, they 
proposed a common cycle replenishment approach, 
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where the supplier alone makes all replenishment 
decisions, without ordering on the part of the 
customers. Their model and concepts were 
demonstrated by a simple numerical example and 
concluded that EDI-based inventory control can be 
attractive from economic, as well as other 
standpoints. Sarker and Khan [30] considered a 
manufacturing system that procures raw materials 
from suppliers in a lot and processes them to convert 
into finished product. An ordering policy is proposed 
for raw materials to meet the requirements of a 
production facility which, in turn, must deliver 
finished products demanded by outside buyers at 
fixed interval points in time. They first formulated a 
general cost model considering both raw materials 
and finished products, then by using this model they 
developed a simple procedure to determine an 
optimal ordering policy for procurement of raw 
materials, and the manufacturing batch size to 
minimize the total cost for meeting the customer 
demand in time. Goyal and Nebebe [31] considered 
the problem of determining economic production 
and shipment policy of a product supplied by a 
vendor to a single buyer. The objective of their study 
was to minimize the total joint annual costs incurred 
by the vendor and the buyer. Sarmah et al. [33] 
considered coordination between two different 
business entities is an important way to gain 
competitive advantage as it lowers supply chain cost, 
so they reviewed literature dealing with buyer 
vendor coordination models that have used quantity 
discount as coordination mechanism under 
deterministic environment and classified the various 
models. An effort was also made to identify critical 
issues and scope of future research. Sarker and 
Diponegoro [35] considered an optimal policy for 
production and procurement in a supply-chain 
system with multiple non-competing suppliers, a 
manufacturer and multiple non-identical buyers. 
They assumed that the manufacturer procures raw 
materials from suppliers, converts them to finished 
products and ships the products to each buyer at a 
fixed-interval of time over a finite planning horizon. 
The demand of finished product is given by buyers 
and the shipment size to each buyer is fixed. Their 
objective was to determine the production start time, 
the initial and ending inventory, the cycle beginning 
and ending time, the number of orders of raw 
materials in each cycle, and the number of cycles for 
a finite planning horizon so as to minimize the 
system cost. A surrogate network representation of 
the problem developed to obtain an efficient, optimal 
solution to determine the production cycle and cycle 
costs with predetermined shipment schedules in the 
planning horizon. This research prescribed the 

optimal policies for a multi-stage production and 
procurements for all shipments scheduled over the 
planning horizon. Chiu et al. [36] incorporated a 
multi-delivery policy and quality assurance into an 
imperfect economic production quantity (EPQ) 
model with scrap and rework. They assumed the 
reworking of repairable defective items in each 
production run and the finished items can only be 
delivered to customers if the whole lot is quality 
assured after rework. The expected integrated cost 
function per unit time was derived. A closed-form 
optimal batch size solution to the problem was 
obtained. Chiu et al. [40] determined jointly the 
optimal replenishment lot size and optimal shipment 
policy for an extended EPQ model with failure in 
rework and multi-delivery policy. A closed-form 
optimal production-shipment decision was obtained 
for such a specific vendor-buyer integrated system. 

A recent article, Grubbström and Erdem [41] 
proposed algebraic approaches for solving the 
economic order quantity (EOQ) model with 
backlogging without reference to the use of 
derivatives, neither applying the first-order nor 
second-order differentiations. A few studies used the 
same algebraic approach to derive various specific 
production lot size problems [42-45]. 

This paper uses the similar algebraic approach to 
reexamine the problem studied by Chiu et al. [45]. 
We incorporate the scrap rate in regular production 
process and failure rate in rework process (see Fig. 2) 
in Chiu’s et al. model, and demonstrate that the 
optimal production-shipment policy to such an 
extended model can be derived with derivatives. 

It would also be interesting, for comparisons, to 
model supply chain problems by using artificial 
intelligence techniques like agents which proved to 
be applicable to other complex domains such as 
financial markets [46]. 
 
 

2  The Problem and Formulations 
Consider a product can be produced at a constant 
production rate P and it has a flat annual demand 
rate λ. Its production process may generate x portion 
of random nonconforming items at a rate d, where 
d=Px. It is also assumed that under regular operating 
schedule, P is larger than the sum of λ and d. That is: 
(P-d-λ)>0. As stated in [45], to assure the product 
quality, all manufactured items are screened and the 
inspection cost is included in unit production cost C. 
Among the defective products, a θ portion (where 
0<= θ <1) is scrap and the other (1-θ) portion can be 
reworked at a rate P1, right after regular production 
each cycle. Further, there is a failure in rework rate 
θ1 (where 0<= θ1 <1) during the rework process.  
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Let d1 denote production rate of scrap items during 
rework, then d1 can be expressed as d1=P1θ1. 
An amending product distribution policy is 

considered for the purpose of lowering stock holding 
costs for both vendor and buyer. Under such a 
specific delivery plan, the first installment of 
finished products is distributed to buyer to satisfy 
product demand during vendor’s uptime t1 and 
rework time t2 (see Figure 1). Then, when the whole 
lot is quality assured (in the end of rework process), 
fixed quantity n installments of the rest of finished 
items are shipped to customer at a fixed interval of 
time during the production downtime t3. 
Figure 1 illustrates the on-hand inventory level of 

vendor’s perfect quality products in the proposed 
model. It is noted that a significant difference in total 
stock holding when comparison with that in [40]. 

Parameters used in the modeling and formulations 
include the setup cost K per production cycle, unit 
manufacturing cost C, unit holding cost h, unit 
holding cost h1 for reworked items, unit reworking 
cost CR, disposal cost for scrap each item CS, and the 
fixed delivery cost K1 per shipment, and the variable 
distribution cost CT per finished product delivered. 
Additional notation is listed as follows. 

T = time between initiate a production run, 
t = the production time needed for producing 

enough finished products to satisfy 
buyer’s product demand during t1 and t2, 

t1 = the regular production uptime, 
t2 = rework time, 
t3 = production downtime, time for delivering 

the rest of quality assured finished items, 

 

 
 

Fig. 1: The on-hand inventory level of vendor’s perfect quality products in the 
proposed model 

 

 

Fig. 2: The on-hand inventory of scrap items in the proposed model.
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tn = a fixed interval of time between each 
installment of products delivered in t3, 

H = the level of enough inventory to satisfy 
product demand during t1 and t2, 

H1 = the level of on-hand inventory when 
regular production ends, 

H2 = the level of on-hand inventory when the 
rework process ends, 

Q = production lot size, one of the decision 
variables, 

n  = number of fixed quantity installments of 
the remaining finished items to be 
delivered to buyer during t3, the other 
decision variable, 

I(t) = the level of on-hand inventory of perfect 
quality items at time t, 

Is(t) = the level of on-hand inventory of scrap 
items at time t (see Fig. 2), 

TC(Q,n) = total production-distribution costs per 
cycle for the proposed model, 

E[TCU(Q,n)] = the long-run average 
production-inventory-distribution costs 
per unit time for the proposed model. 

 

Total production-distribution costs per cycle for 
the proposed model, TC(Q,n) consists of the setup 
cost; variable production costs; variable rework costs; 
variable disposal costs for scrap items generated 
during t1 and t2; the fixed and variable delivery costs; 
vendor’s inventory holding costs in periods t1, t2, and 
t3; variable holding costs for reworked items; and the 
stock holding costs in buyer’s end. Therefore, total 
production-distribution costs per cycle for the 
proposed model, TC(Q,n) is 
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One notes that since defective rate x is a random 
variable with a known probability density function, 
one could use the expected values of x in the related 
cost analysis. With further derivation, the long-run 
average production-inventory-distribution costs per 
unit time for the proposed model E[TCU(Q,n)] is as 
follows. 
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3 Derivations of the Optimal 

Production-Shipment Policy 
A simplified algebraic solution procedure is adopted 
in this section instead of using differential calculus 
on the long-run average production-inventory- 
delivery cost function E[TCU(Q,n)]. It is noted that 
Eq. (2) has two decision variables Q and n, and they 
are in terms of coefficients associated with nQ

-1, Q-1, 
Q, and Qn

-1. 
  Let β1, β2, β3, β4 and β5 denote the following: 

( ) ( ){ }1 3 4 41R S TCE C E C E Cβ λ θ ϕ= + − + +      (4) 

2 1 3K Eβ λ=                 (5) 

( )3 1 3K K Eβ λ= +               (6) 
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Therefore, Eq. (2) becomes 
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With rearrangement, Eq. (9) becomes 
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Hence, one has 
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One notes that E[TCU(Q,n)] is minimized if the 
second and the third square terms in Eq. (12) equal 
zeros. That is 
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3.1  Results with Further Discussion 

Upon obtaining Eq. (17), the optimal number of 
deliveries, one can now substitute β2, β3, β4 and β5 
(from Equations (5)-(8)) in Eq. (17) and obtain n* as 
follows. 
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It is noted that n is the number of shipments and it 
must be an integer number. However, Eq. (18) is 
likely to result a real number. Let n

+ denote the 
smallest integer number greater than or equal to n 
(derived from Eq. (18)) and n

- denote the largest 
integer number less than or equal to n. Therefore, n* 

is determined to be either n+ or n-, a known constant.  
Therefore, one can now reconsider E[TCU(Q,n)] 

as a cost function with single decision variable Q. Eq. 
(9) becomes 
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Let β6 and β7 denote the following: 
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One notes that E[TCU(Q,n)] is minimized if the 
second square terms in Eq. (22) equals zero. That is 
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Substituting Equations (20) and (21) in Eq. (24) 
one has 
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Finally, substitute β2, β3, β4 and β5 (from 
Equations (5)-(8)) in Eq. (25), and with further 
derivations, one obtains the optimal replenishment 
lot size as 
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  (26) 

4  Numerical Example 
This section uses numerical example to demonstrate 
the savings in stock holding costs for both vendor 
and buyer from research results derived by the 
present study and what was given in Chiu et al. [40]. 
The values of parameters used are 

P = 60000 products per year, 
λ = 3100 items per year, 
x = defective rate which follows a uniform 

distribution over the range [0, 0.3], 
P1 = 3600 units per year, 
θ = 0.1, portion of scrap during regular 

production process, 
θ1 = 0.111, portion of scrap during rework 

process, 
K = $35000, setup cost per production run, 
C = $100, unit production cost, 
h = $25, holding cost per item per year at 

producer’s end, 
CR = $60, repaired cost for each item reworked, 
CS = $20, disposal cost for each scrap item, 
h1 = $60, unit holding cost during rework, per 

unit time, 
K1  = $2500, fixed cost per shipment, 
CT = $0.1, variable delivery cost per item, 
h2 = $80, holding cost per item per year at the 

buyer’s end. 
 

Applying Equations (15) and (18), one obtains (Q, 
n)=(2975, 4.5). As stated earlier, because n takes on 
an integer value only, one compares two adjacent 
integer number of delivery and its operating 
production policies (i.e. (Q, n)=(2896, 4) and (Q, n) 
=(3049, 5)), and obtains E[TCU(2896, 4)]= $452538 
and E[TCU(3049, 5)]=$452517 respectively (from 
Eq. (2)). 
Hence, the optimal production-shipment policy 

for proposed model (Q*,n*+1)=(3049,6) is derived 
without derivatives.  
Note that the aforementioned approach can be 

used to solve any real world production-delivery 
integrated systems of the described characteristics. 
  

 

5 Concluding Remarks 
This paper presents a simplified algebraic solution 
procedure to reexamines the problem in Chiu et al. 
[45]. We incorporate the scrap rate in regular 
production process and failure rate in rework process 
into Chiu’s et al. model, and demonstrate that the 
optimal production-shipment policy for such an 
extended model can be derived with derivatives. 
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